Kriging equations

Kriging equations#

Intrinsic model

\[ \mathbb{E} \left[ ( z( \boldsymbol{ \mathrm{ x } } ) - m )( z( \boldsymbol{ \mathrm{ x } } + \boldsymbol{ \mathrm{ h } } ) - m ) \right] = C(h) \]
\[ h = \lVert \boldsymbol{ \mathrm{ x } } - ( \boldsymbol{ \mathrm{ x } } + \boldsymbol{ \mathrm{ h } } ) \rVert = \sqrt{ ( x_{1} - x'_{1} ) ^ 2 + ( x_{2} - x'_{2} ) ^ 2 + ( x_{3} - x'_{3} ) ^ 2 } \]

Expression of the Intrisic model via semi-variogram:

\[ \gamma(h) = \frac{1}{2} \mathbb{E}\left[ z(\boldsymbol{ \mathrm{ x } } ) - z( \boldsymbol{ \mathrm{ x } } + \boldsymbol{ \mathrm{ h } } ) ^ 2 \right] = C(0) - C(h) \]

Weighted averaging:

\[ \hat{ z }( \boldsymbol{ \mathrm{ x } }_{ \kappa } ) = \sum\limits_{\alpha}^{N} \lambda_{\alpha} z(\boldsymbol{ \mathrm{ x } }_\alpha) \]

where \(\lambda_{\alpha}\) is the weighting coefficient. This quantity can be estimated from the variance (\(\mathbb{V}\)):

\[\begin{split} \begin{array}{l} \mathbb{V}( z( \boldsymbol{ \mathrm{ x } }_{ \kappa } ) ) = \mathbb{E} \{ \left[ z( \boldsymbol{ \mathrm{ x } }_{ \kappa } ) - \hat{ z }( \boldsymbol{ \mathrm{ x } }_{ \kappa } ) \right ] ^ 2 \} \\ \phantom{\mathrm{ Var( z( \boldsymbol{ \mathrm{ x } }_{ \kappa } ) ) }} = C(0) - 2 \sum\limits_{\alpha} \lambda_{\alpha} C( \lVert \boldsymbol{ \mathrm{ x } }_{ \alpha } \boldsymbol{ \mathrm{ x } }_{ \kappa } \rVert ) + \sum\limits_{ \alpha } \sum\limits_{ \beta } \lambda_{ \alpha } \lambda_{ \beta } C( \lVert \boldsymbol{ \mathrm{ x } }_{ \alpha } \boldsymbol{ \mathrm{ x } }_{ \beta } \rVert ) \end{array} \end{split}\]
\[ \sum\limits_{\alpha}^{N} \lambda_{\alpha} = 1 \]

Differentiation with respect to \(\lambda_\alpha\) to find the predicted value while also minimizing the variance:

\[ \sum\limits_{\beta}^{ N } \lambda_{ \beta } C_{n}( \lVert \boldsymbol{ \mathrm{ x } }_{ \alpha } \boldsymbol{ \mathrm{ x } }_{ \beta } \rVert ) - \mu = C_{n}( \lVert \boldsymbol{ \mathrm{ x } }_{ \alpha } \boldsymbol{ \mathrm{ x } }_{ \kappa } \rVert ) \]
\[ \sum\limits_{\beta}^{N} \lambda_{\beta} = 1 \]

This can also be expressed as a system of linear equations that can be solved to determine \(\lambda_{\alpha}\) and \(\lambda_{\beta}:\)

\[\begin{split} \begin{bmatrix} \gamma(d(u_1,u_1)) & \gamma(d(u_1,u_2)) & \cdots & \gamma(d(u_1,u_n)) & 1 \\ \gamma(d(u_2,u_1)) & \gamma(d(u_2,u_2)) & \cdots & \gamma(d(u_2,u_n)) & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \gamma(d(u_n,u_1)) & \gamma(d(u_n,u_2)) & \cdots & \gamma(d(u_n,u_n)) & 1 \\ 1 & 1 & \cdots & 1 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \\ \mu \end{bmatrix} = \begin{bmatrix} \gamma(d(u,u_1)) \\ \gamma(d(u,u_2)) \\ \vdots \\ \gamma(d(u,u_n)) \\ 1 \end{bmatrix} \end{split}\]

where \(\mu\) is the Lagrangian coefficient:

\[ \mu = \frac{ 1 - 1^{T} \lambda }{ \mathbf{1}^{T} K^{-1} \boldsymbol{ \mathrm{ k } } } \]

where \(K\) is the \(n~\mathrm{x}~n\) covariance matrix, \(\boldsymbol{ \mathrm{ k } }\) is the \(n~\mathrm{x}~1\) vector of covariance estimates between sampled and unsampled locations, \(1\) corresponds to a vector of ones, and \(\mathbf{1}^{T}\) is the transpose of the vector of ones. Thus, the above system of linear equations for \(\lambda\) can be solved via:

\[ \lambda = K^{-1} (\mathbf{k} - \mu) \]

This can also be expressed directly in terms of the semivariogram:

\[ \sum\limits_{\beta}^{ N } \lambda_{ \beta } \gamma_{n}( \lVert \boldsymbol{ \mathrm{ x } }_{ \alpha } \boldsymbol{ \mathrm{ x } }_{ \beta } \rVert ) + \mu = \gamma_{n}( \lVert \boldsymbol{ \mathrm{ x } }_{ \alpha } \boldsymbol{ \mathrm{ x } }_{ \kappa } \rVert ) \]
\[ \sum\limits_{\beta}^{N} \lambda_{\beta} = 1 \]

Once the \(\lambda_{\beta}\) and \(\mu\) estimates have been obtained, the kriged prediction variance can be estimated via:

\[\begin{split} \begin{array}{l} \mathbb{V}( z( \boldsymbol{ \mathrm{ x } }_{ \kappa } ) ) = \mathbb{E} \{ \left[ z( \boldsymbol{ \mathrm{ x } }_{ \kappa } ) - \hat{ z }( \boldsymbol{ \mathrm{ x } }_{ \kappa } ) \right ] ^ 2 \} \\ \phantom{\mathrm{ Var( z( \boldsymbol{ \mathrm{ x } }_{ \kappa } ) ) }} = C(0) + \mu - \sum\limits_{\alpha} \lambda_{\alpha} C( \lVert \boldsymbol{ \mathrm{ x } }_{ \alpha } - \boldsymbol{ \mathrm{ x } }_{ \kappa } \rVert ) \\ \phantom{\mathrm{ Var( z( \boldsymbol{ \mathrm{ x } }_{ \kappa } ) ) }} = \mu + \sum\limits_{\alpha} \lambda_{\alpha} \gamma( \lVert \boldsymbol{ \mathrm{ x } }_{ \alpha } - \boldsymbol{ \mathrm{ x } }_{ \kappa } \rVert ) -\gamma(0) \end{array} \end{split}\]

Ordinary kriging estimation equation:

\[ \hat{z}(u) = \sum_{i=1}^{n} \lambda_i z(u_i) \]
\[ \sum\limits_{i=1}^{n} \lambda_{i} = 1 \]